Perpustakaan Universitas Advent Indonesia

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Pustakawan
  • Area Anggota
  • Pilih Bahasa :
    Arabic Bengali Brazilian Portuguese English Espanol German Indonesia Bahasa Jepang Melayu Persia Russian Thai Turkish Urdu

Search by:

All Author Subject ISBN/ISSN Advanced Search

Last search:

{{tmpObj[k].text}}
Image of An I ntroduction to Support Vector Machines and other kernel-based learning methods

Text

An I ntroduction to Support Vector Machines and other kernel-based learning methods

Nello Cristianini - Personal Name;

Support Vector Machines (SVMs) are a new generation of classification method. Derived from well principled Statistical Learning theory, this method attempts to produce boundaries between classes by both minimising the empirical error from the training set and also controlling the complexity of the decision boundary, which can be non-linear. SVMs use a kernel matrix to transform a non-linear separation problem in input space to a linear separation problem in feature space. Common kernels include the Radial Basis Function, Polynomial and Sigmoidal Functions. In many simulated studies and real applications, SVMs show superior generalisation performance compared to traditional classification methods. SVMs also provide several useful statistics that can be used for both model selection and feature selection because these statistics are the upper bounds of the generalisation performance estimation of Leave-One-Out Cross-Validation. SVMs can be employed for multiclass problems in addition to the traditional two class application. Various approaches include one-class classifiers, one-against-one, one-against-all and DAG (Directed Acyclic Graph) trees. Methods for feature selection include RFE (Recursive Feature Elimination) and Gradient Descent based approaches.


Ketersediaan
79227515.63 CRI ALibrary Lantai 3Tersedia
Informasi Detil
Judul Seri
-
No. Panggil
515.63 CRI A
Penerbit
: Cambridge University Press., 2000
Deskripsi Fisik
189 hlm
Bahasa
English
ISBN/ISSN
0 521 78019 5
Klasifikasi
NONE
Tipe Isi
-
Tipe Media
-
Tipe Pembawa
-
Edisi
1
Subyek
intended for machine learning students
Info Detil Spesifik
-
Pernyataan Tanggungjawab
-
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
Komentar

You must be logged in to post a comment

Login Pustakawan
Fakultas
Fakultas Filsafat
Fakultas Keguruan dan Ilmu Pendidikan
Fakultas Ekonomi
Fakultas Ilmu Keperawatan
Fakultas Matematika & Ilmu Pengetahuan Alam
Fakultas Teknologi Informasi

Pascasarjana
Program Magister Filsafat
Program Magister Manajemen

Akses Cepat

Penerimaan Mahasiswa Baru
Agenda Universitas
Modul Mahasiswa
Modul Dosen
Modul Orang Tua
UNAI Alumni
UNAI News
UNAI Journal
UNAI Library
Peta Kampus

a Seventh-day Adventist institution of higher education

Search

start it by typing one or more keywords for title, author or subject

UNIVERSITAS ADVENT INDONESIA

Jl. Kolonel Masturi No.288, Kabupaten Bandung Barat, Jawa Barat, Indonesia 40559

© 2023 — Universitas Advent Indonesia

Powered by SLiMS
Select the topic you are interested in
  • Computer science, information & general works
  • Philosophy & psychology
  • Religion
  • Social sciences
  • Language
  • Pure Science
  • Applied sciences
  • Arts & recreation
  • Literature
  • History & geography
Advanced Search